
Trends
Sleep disturbances are associated with
increased risk for type 2 diabetes (T2D).
Enhanced sympathetic tone, desyn-
chronization of tissue circadian clocks,
abnormal secretion of hormones, and
obesity are relevant to insulin resistance
during sleep disturbances.

Melatonin regulates energy metabolism
by maintaining circadian rhythms.
Treatment with melatonin improves glu-
cose metabolism by increasing insulin
sensitivity in target tissues in T2D ani-
mals. Their beneficial effects in humans
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Modern lifestyles prolong daily activities into the nighttime, disrupting circadian
rhythms, which may cause sleep disturbances. Sleep disturbances have been
implicated in the dysregulation of blood glucose levels and reported to increase
the risk of type 2 diabetes (T2D) and diabetic complications. Sleep disorders are
treated using anti-insomnia drugs that target ionotropic and G protein-coupled
receptors (GPCRs), including g-aminobutyric acid (GABA) agonists, melatonin
agonists, and orexin receptor antagonists. A deeper understanding of the
effects of these medications on glucose metabolism and their underlying
mechanisms of action is crucial for the treatment of diabetic patients with sleep
disorders. In this review we focus on the beneficial impact of sleep on glucose
metabolism and suggest a possible strategy for therapeutic intervention against
sleep-related metabolic disorders.
are controversial.

g-Aminobutyric acid (GABA) directly
modulates insulin secretion from pan-
creatic islet b cells. The metabolic
effects of GABA agonists/benzodiaze-
pines on glucose metabolism remain
controversial.

Timely activation of the orexin system
plays a crucial role in the maintenance of
glucose homeostasis. Timely adminis-
tration of orexin receptor antagonists
might be beneficial for improving glu-
cose intolerance in patients with sleep
disorders.
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Sleep Disturbances and T2D
Impairments in the daily sleep/wake cycle due to sleep disturbances, including shift working,
obstructive sleep apnea, and insomnia, are known to increase the risk of T2D [1,2]. Clinical
studies on a large cohort of nurses showed that periods of shift work correlated with an
increased risk of T2D later in life [3,4]. A subsequent study indicated that although sleep
disturbances are often accompanied by depression or hypertension [5], sleep impairments
themselves increase the risk of T2D [6]. Loss of sleep for one night was previously shown to
induce insulin resistance in healthy human subjects [7,8], whereas restriction of sleep from 8.5 to
5.5 h for 2 weeks caused glucose intolerance without affecting insulin secretion [9]. Mechanisti-
cally, elevations in sympathetic nervous tone are a major cause of glucose intolerance in healthy
human subjects [10–12]. In addition, T2D patients with short or long sleep times had elevated
glucose and HbA1c levels in Japanese populations [13]. Thus, an adequate quantity of sleep is
important for the maintenance of glucose homeostasis.

The quality of sleep is also known to be relevant to the regulation of energy and glucose
homeostasis [1]. A previous study reported that rapid eye movement (REM) and non-REM (slow-
wave sleep) sleep are functionally linked to appetite and glucose metabolism, respectively [8].
Acute suppression of slow-wave deep sleep caused insulin resistance in healthy human
subjects [14]. Similarly, the amount of slow-wave sleep was shown to decrease in patients
with T2D [15]. Decreases in slow-wave sleep have also been associated with thickening of the
intima of the carotid arteries as an index of the progression of atherosclerosis [16]. However, it is
important to note that some studies have indicated that REM sleep plays an important role in
glucose metabolism. Apnea and hypopnea during REM sleep were found to be associated with
insulin resistance, whereas during non-REM sleep they were associated with glucose intoler-
ance, in a community-based sample [17]. Furthermore, chronic glycemic control has been
adversely associated with obstructive sleep apnea in REM sleep but not non-REM sleep in
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patients with T2D [18]. Impaired sleep quantity and quality are thus closely associated with the
development of glucose dysregulation and progression of T2D complications [1,16].

Mechanism of Glucose Intolerance in Sleep Disturbance
The underlying mechanisms by which sleep disturbances cause glucose intolerance remain
unclear and controversial [1,10]. Excessive activation of the autonomic sympathetic nervous
system (SNS) is a commonly accepted crucial factor that causes glucose intolerance and insulin
resistance on sleep restriction [1,10]. Inappropriate elevations in glucocorticoid and growth
hormone levels also promote glucose intolerance under sleep-deprived conditions because
these hormones act to elevate blood glucose levels against insulin [1,10,12]. Although a previous
study reported that insulin signaling was only partially impaired in cultured adipocytes from
subcutaneous fat biopsy samples from healthy subjects after four nights of sleep restriction
[19], a recent in vivo study demonstrated that subchronic sleep restriction (five nights with 4 h of
sleep) caused peripheral but not hepatic insulin resistance in healthy humans [20]. Furthermore,
one night of sleep loss was found to alter the epigenetic and transcriptional profiles of core
circadian clock genes in skeletal muscle and subcutaneous adipose tissue biopsy samples from
healthy subjects in a tissue-specific manner [21]. Since these genes are key regulators of glucose
metabolism, and because their alteration is associated with impaired glucose tolerance, the
desynchronization of tissue circadian clocks following sleep restriction may underlie the associ-
ated metabolic disorders. It currently remains unclear how these factors interact with each other to
cause insulin resistance on sleep deprivation. Further studies are needed to elucidate the precise
mechanisms, particularly in terms of the influences of changes in sleep quantity and quality.

Sleep restriction for longer periods causes abnormal body weight gain with increases in fat mass
and sleep restriction-induced increases in food consumption are considered to be key mecha-
nisms underlying the weight gain observed [1,10,12,22]. Untimely eating and/or late-night eating
have been implicated in excessive body weight gain [23,24]. However, there are conflicting
findings for the effects of sleep loss on the secretion of the hunger-promoting hormone ghrelin
and satiety-promoting hormone leptin [25]. Evidence for the impact of sleep restriction or
circadian misalignment on daytime physical activity and energy expenditure is also inconsistent;
this may be due to different protocols and/or backgrounds of subjects enrolled in each trial and
the differential influences of sleep on multiple components of energy expenditure [25,26]. Sleep
restriction is considered to compromise dietary interventions to reduce adiposity because
2 weeks of combined energy and sleep restriction caused a smaller loss of body fat and greater
loss of fat-free body mass in overweight middle-aged adults [27]. Similarly, better sleep quantity
and quality were associated with greater fat-mass loss during moderate caloric restriction in
obese adults [28]. Prolonged sleep restriction with concurrent circadian disruption for 3 weeks,
as a model of shift work, has been shown to decrease the resting metabolic rate and increase
postprandial plasma glucose levels due to an inadequate pancreatic b cell response; however,
minor weight loss was observed in this study [29]. Further studies with large cohorts are required
to clarify whether the impact of sleep restriction on energy expenditure is sufficient to promote
obesity and glucose intolerance. The combination of enhanced sympathetic nerve activity,
increased secretion of counter-regulatory hormones, and obesity on sleep restriction may result
in insulin resistance and glucose intolerance.

Improvement in Sleep with Anti-insomnia Drugs and Glucose Metabolism
Since sleep disturbances have been strongly implicated in glucose intolerance and insulin
resistance, it is important to establish whether the amelioration of sleep disturbances by
anti-insomnia drugs affects glucose metabolism in diabetic patients. Melatonin agonists, a dual
orexin receptor antagonist (DORA), and GABA agonists (benzodiazepines and non-benzodia-
zepines) are clinically used in the treatment of insomnia [30,31]. Up-to-date knowledge of their
impacts on glucose metabolism is summarized below.
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Melatonin and Glucose Metabolism
Melatonin Regulation of Glucose Homeostasis
The suprachiasmatic nucleus (SCN) in the hypothalamus is a master biological clock that
regulates circadian periods of approximately 24 h [1,22,32]. Light is a crucial environmental
factor that affects and resets clock function [1,22,32]. Various physiological functions, including
the sleep/wake cycle, are synchronized with SCN oscillatory activity. Individuals with chronic
circadian desynchronization (e.g., shift workers) exhibit daytime sleepiness and nighttime insom-
nia [1,32,33]. Melatonin is a hormone produced in the pineal gland at night according to daily
signals from the SCN [34–36] (Figure 1). In mammals, melatonin is involved in the entrainment of
the circadian rhythms of physiological functions such as sleep timing, blood pressure regulation,
and seasonal reproduction. Melatonin acts via three GPCRs: MT1, MT2, and MT3 [37]. MT1 and
MT2 (also known as melatonin receptor 1A and 1B, respectively) have been implicated in
circadian rhythm-regulated sleep control [38,39]. Therefore, melatonin and its receptor agonists
are utilized in the treatment of sleep disorders with rhythm disturbances [40–42].

Melatonin regulates energy homeostasis by affecting endogenous circadian rhythms [36,43].
Serum levels of melatonin were previously reported to be decreased in diabetic Goto Kakizaki
rats and T2D patients with hyperinsulinemia [44]. Genome-wide association studies showed a
close association between SNPs in the MTNR1B gene (encoding MT2) and fasting hyperglyce-
mia and T2D [45–48]. Chronic oral administration of melatonin prevented excessive body weight
gain, hyperglycemia, hyperinsulinemia, and/or hyperlipidemia in T2D rats [49–51]. Under these
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Figure 1. Melatonin and Orexin Systems for Regulating Energy and Glucose Metabolism under a 24-h Light/
Dark Cycle. Circadian rhythms are produced by a central biological clock system located in the suprachiasmatic nucleus
(SCN), according to the light/dark cycle. Circadian signals are transmitted to the pineal gland (PG) through the para-
ventricular hypothalamic nucleus (PVN), the intermediolateral nucleus (IML) in the spinal cord, and the superior cervical
ganglia and, as a result, melatonin is specifically secreted in the dark phase. Melatonin activates two types of receptors, MT1
and MT2, to regulate circadian rhythms in peripheral tissues, energy balance, and the secretion and actions of insulin. For
more details on the neural pathway for melatonin production, see [36]. Circadian signals are also sent to the perifornical/
lateral hypothalamic area (LH), mainly through the dorsomedial hypothalamic nucleus and, as a result, orexins are secreted
during active waking (i.e., the light phase for diurnal animals and dark phase for nocturnal animals). The secretion of orexin is
also promoted by hypoglycemia and increased motivation. Orexin receptor 1 (OX1R) is selective for orexin A, whereas OX2R
has similar affinities for orexin A and orexin B. Orexin stabilizes the wakefulness state, promotes feeding behavior, and
regulates energy and glucose metabolism through the autonomic nervous system. For further details on the functions of
orexin, see [70].
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conditions, melatonin improved insulin sensitivity and insulin secretion [51,52]. Melatonin also
increased serum levels of adiponectin, an adipose tissue-derived adipokine that has the ability to
ameliorate insulin sensitivity by facilitating fatty acid oxidation and energy expenditure via the
AMPK- and PPARg-mediated pathways [53]. Melatonin also decreased elevated serum levels of
free fatty acids (FFAs), which are attributable to insulin resistance in obesity and T2D [51]. In mice
fed a high-fat diet, oral treatment with melatonin for 8 weeks decreased hyperglycemia and
hyperinsulinemia [54]. These effects were due to improved insulin sensitivity, at least via the
restoration of the vascular action of insulin, which is responsible for glucose utilization in skeletal
muscle. These findings suggest that melatonin exerts beneficial effects on impaired glucose
regulation in obesity and/or T2D.

However, the beneficial effects of melatonin on glucose metabolism are controversial. A previous
study reported that acute administration of melatonin in both the morning and evening impaired
glucose tolerance in healthy young women [55]. Similarly, daytime administration of melatonin
acutely reduced glucose tolerance and insulin sensitivity in postmenopausal women [56]. There
are also negative findings from markedly longer trials, which have instead found improvements in
various metabolic/cardiovascular parameters, such as blood pressure and cholesterol values, in
patients with metabolic syndrome [57]. The common diabetes risk variant in MTNR1B (non-
coding variant, rs10830963) was associated with delayed offset of melatonin synthesis and,
thus, a longer duration of elevated melatonin levels in healthy humans [58]. However, melatonin
has been shown to improve metabolic dysfunctions, oxidative stress, and insulin resistance in
sleep-restricted rats [59], and rare coding SNP variants of the human MTNR1B gene that
inactivate MT2 receptors are also associated with T2D [60]. Therefore, supplementation with
melatonin may be beneficial, particularly for individuals with adverse baseline metabolic profiles.

Decreases and increases in insulin secretion have been reported after melatonin treatment.
Previous studies have mostly shown the inhibitory effects of melatonin via MT1 and MT2
receptors expressed in pancreatic islet b cells [61]. Melatonin reduces cytosolic cAMP and/
or cGMP levels and suppresses insulin secretion via these receptors [61]. An increase in the
expression of the MT2 receptor found in the islets of humans with a common diabetes risk
variant in MTNR1B (rs10830963) was found to enhance the melatonin-induced inhibition of
insulin release in insulin-secreting cells [62]. By contrast, other studies demonstrated the
stimulatory effects of melatonin on insulin secretion. Treatment with melatonin also induced
the secretion of insulin from the pancreas in rats in vivo [52,63]. In addition, melatonin amelio-
rated hyperglycemia by increasing insulin secretion and facilitating b cell regeneration and
proliferation in streptozotocin-induced diabetic rats [64]. Since melatonin and its metabolites
are known to exert antioxidant and anti-inflammation effects, the protection of pancreatic b cells
from dysfunction or apoptosis in alloxan- and streptozotocin-induced diabetic rats may be
explained by these mechanisms [65]. The kinetics of the effects of melatonin in islets are complex
because melatonin was shown to inhibit glucose-stimulated insulin secretion when used acutely
in the INS-1 pancreatic b cell line [66], whereas prolonged exposure to melatonin (with a duration
mimicking the period of darkness) enhanced insulin secretion from b cells [67], stressed islets
from nondiabetic humans, and islets derived from T2D patients [52] by the sensitization of cAMP
signaling. Although melatonin supplementation may improve metabolic function under certain
conditions, it is important to note that its efficacy is strongly affected by numerous factors,
including administration timing, duration, and dose and the genetic background of subjects.

Melatonin Agonists and Glucose Metabolism
Based on the beneficial effects of melatonin in animal models, melatonin agonists may also exert
beneficial effects on the control of glucose metabolism. The effects of the melatonin agonist
ramelteon on body weight gain and glucose metabolism were examined in 20 patients with
schizophrenia. Treatment with ramelteon for 8 weeks did not affect body weight, waist
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circumference, or body-fat composition. Ramelteon also did not alter blood glucose or insulin
levels, whereas it decreased serum cholesterol levels [68]. The metabolic effects of another
melatonin agonist, agomelatine, were examined in 40 patients with depression and poorly
controlled T2D; agomelatine treatment for 4 months decreased HbA1c levels by the end of the
study, whereas fasting blood levels and body weights were unaltered [69]. Studies with large
cohorts are needed to more clearly understand the effects of melatonin agonists on glucose
metabolism and obesity.

Orexin and Glucose Metabolism
Orexin Regulation of Glucose Homeostasis
Orexins (also known as hypocretins) are hypothalamic neuropeptides and endogenous ligands
for two GPCRs, orexin receptor 1 (OX1R) and 2 (OX2R) [70]. OX1R is selective for orexin A,
whereas OX2R has similar affinities for orexins A and B. Although orexins regulate feeding
behavior, they are mainly regarded as key modulators of the sleep/wakefulness cycle (Figure 1).
OX2R plays a major role in the maintenance of a consolidated wakefulness state, whereas OX1R
and OX2R both contribute to the inhibition of REM sleep. Orexin-deficient mice display a
narcolepsy-like phenotype, similar to dogs that carry a mutation preventing the expression
of OX2R [70].

The hypothalamic orexin system is also critically involved in the regulation of energy and glucose
metabolism [22,71–73]. Narcolepsy caused by orexin deficiency was previously shown to be
accompanied by obesity and glucose intolerance in humans and animals [74–76]. Orexin-
deficient mice developed glucose intolerance and insulin resistance with aging and severe
obesity on a high-fat diet [77]. OX2R-knockout mice also showed glucose intolerance, while
transgenic mice overexpressing orexin were protected from abnormal body weight gain and
glucose intolerance on a high-fat diet [73]. These findings indicate that orexin is required for the
maintenance of glucose homeostasis.

Orexin levels in the cerebrospinal fluid (CSF) change daily; they increase in the awake–active
phase and decrease in the sleep–resting phase [78,79]. Administration of orexin A in the awake–
active phase acutely increased blood glucose levels via the OX2R–sympathetic nerve pathway
and subsequently decreased blood glucose levels via the OX1R–parasympathetic nerve path-
way in mice fed a normal chow diet [71]. The bidirectional regulation of hepatic gluconeogenesis
by orexin explains the mechanism underlying daily glucose oscillations [71]. In T2D db/db mice,
administration of orexin A in the awake phase, according to the daily rhythm of endogenous
orexin secretion, ameliorated blood glucose levels in the subsequent resting phase by sup-
pressing hepatic gluconeogenesis, whereas no such improvement was observed when orexin A
was administered during the sleep–resting phase [71]. Thus, timely activation of the orexin
system is important in ameliorating glucose metabolism. We consider elevations in orexin in the
early awake phase to support locomotion with food seeking by increasing hepatic gluconeo-
genesis. Once a sufficient amount of food is acquired for survival, orexin suppresses hepatic
gluconeogenesis to avoid postprandial hyperglycemia [71]. Orexin-induced glucose uptake in
skeletal muscle and thermogenesis in brown adipose tissue [80,81] may also contribute to the
regulation of daily rhythms in glucose metabolism. Overall, orexin appears to play a pivotal role in
the dynamic regulation of glucose metabolism (i.e., the maintenance of ‘glucose homeody-
namics’) according to the daily sleep/wake cycle (Figure 2).

Orexin Receptor Antagonists and Glucose Metabolism
Changes in orexin levels have been suggested as a cause of insomnia; however, CSF orexin
levels have not yet been reported in patients with insomnia. Accordingly, transgenic mice
overexpressing orexin showed reduced sleep quality [82]. mRNA expression of preproorexin
was previously shown to be reduced due to hyperglycemia in genetically obese ob/ob mice [83]
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Figure 2. The Role of Orexin in the Maintenance of Energy and Glucose Homeostasis According to the Sleep/
Wake Cycle. The hypothalamic orexin system is activated by the circadian system, lower energy levels, and motivation/
emotion. As a result, orexin levels in the cerebrospinal fluid exhibit daily rhythms. Orexin levels are increased during the
awake phase. Orexin promotes wakefulness in association with an increase in locomotor activity and food intake. It also
increases glucose production in the liver, glucose utilization by skeletal muscle, and thermogenesis in brown adipose tissue
(BAT) via activation of the sympathetic nervous system (SNS). All of these functions contribute to maintaining energy
homeostasis. By contrast, orexin levels are decreased during the resting sleep period and, under these conditions, sleep is
induced. Dual orexin receptor antagonists (DORAs) promote sleep by blocking orexin overactivation. Low levels of orexin
suppress hepatic glucose production via the parasympathetic nervous system (PNS). These functions serve as a protective
mechanism against insulin resistance, particularly in the liver [22,71,72]. Therefore, once the sleep/wake cycle is perturbed,
daily orexin actions are disrupted leading to impaired energy and glucose metabolism. Abbreviation: FFAs, free fatty acids.
and daily rhythms in preproorexin gene expression were dampened in diet-induced obese mice
[84]. A recent study demonstrated that CSF orexin A levels were increased in ob/ob and diet-
induced obese mice [85]. Moreover, these obese mice exhibited impaired sleep architecture
[86,87]. As described above, amplification of daily rhythms in the actions of orexin is the key to
maintaining glucose homeostasis; therefore, inhibition of these actions in the sleep–resting
phase may also amplify the daily orexin rhythm and improve glucose metabolism in metabolic
disorders with sleep disturbances. However, this possibility has not been intensively examined.

When SB334867-A, an OX1R antagonist, was administered to ob/ob mice once daily for 7 days
(late light phase) and then twice daily for an additional 7 days (early and late light phase),
cumulative food intake and body weight gain over 14 days were reduced and fasting blood
glucose levels were decreased [88]. Similarly, the administration of SB334867 (twice daily for 1
week, 4 h before lights off and lights on) reduced body weight and food intake, thereby
improving hepatosteatosis without affecting sleep duration in ob/ob and diet-induced obese
mice [85]. By contrast, the administration of another OX1R antagonist, ACT-335827 (once daily,
before the onset of the dark phase), had no effect on glucose or lipid metabolism in a rat model of
diet-induced obesity associated with metabolic syndrome [89]. Additional studies to clarify the
appropriate timing and doses for treatment with OX1R antagonists are required to demonstrate
their effects, if any, on glucose metabolism.

Suvorexant, a DORA that blocks OX1R and OX2R, has now been developed and is clinically
available for the treatment of insomnia [90–92]. Suvorexant induces sleep by inhibiting the
orexin-mediated awake signaling and maintaining sleep status. Randomized placebo-controlled
studies have indicated that suvorexant promotes sleep in healthy humans and patients with
primary insomnia, and its effects were well tolerated [93–95]. Several unique characteristics of
DORA, which may be beneficial as a sleeping drug, have been reported. For example, suvor-
exant increased non-REM sleep and REM sleep in mice [96], whereas GABA activators, as
discussed in Box 1, increased non-REM sleep but decreased REM sleep. DORA did not impair
the capacity to wake up by responding to an emotionally salient acoustic stimulation, whereas it
preserved sleep under conditions of an irrelevant stimulation [97]. Treatment with DORA did not
638 Trends in Endocrinology & Metabolism, September 2016, Vol. 27, No. 9



Box 1. GABA Agonists and Glucose Metabolism

Benzodiazepines and non-benzodiazepines (e.g., imidazopyridines) are allosteric positive modulators of GABAA recep-
tors, which are ligand-gated ion channels that are broadly expressed in the brain. These GABA-signaling activators
promote sleep in patients with insomnia but also cause multiple side effects, such as amnesia, motor disturbance, and
relaxation of muscle, owing to the overall suppression of neuronal activity in the central nervous system (CNS) [106,107].
Pancreatic islet b cells also express GABAA and GABAB receptors and the activation of GABA receptors increases insulin
secretion and b cell proliferation [105]. GABA increases and suppresses insulin secretion from INS-1 cells via GABAA

receptors at low and high extracellular glucose concentrations, respectively [108]; however, the physiological significance
is unclear. GABA is also converted to g-hydroxybutyrate in b cells, which inhibits glucagon secretion from / cells [109].

Nevertheless, evidence for the metabolic effects of GABA agonists/benzodiazepines remains controversial. For example,
a single administration of clonazepam, a benzodiazepine receptor ligand, reduced first-phase insulin secretion in
response to a glucose challenge in healthy young male subjects in a concentration-dependent manner [110]. One-
week administration of alpidem, an imidazopyridine derivative that possesses high affinity for peripheral-type benzo-
diazepine sites, impaired glucose tolerance in patients with anxiety [111]. Moreover, administration of brotizolam
(a benzodiazepine derivative) and zolpidem (an imidazopyridine derivative) for 15 days impaired glucose tolerance in
healthy subjects; impairments induced by brotizolam were greater than those by zolpidem, while insulin-induced glucose
changes were not altered [112]. 40-Chlordiazepam, which acts at peripheral benzodiazepine receptors, reduced
glucose-mediated insulin secretion, whereas clonazepam did not affect insulin secretion in an isolated rat pancreas
[113]. By contrast, a single administration of diazepam, a benzodiazepine derivative, increased plasma insulin levels and
decreased high blood glucose levels during a glucose overload test in streptozotocin-induced diabetic rats, whereas no
effects on glucose levels were observed in normal rats [114]. A recent study also demonstrated that diazepam enhanced
the antidiabetic effects of metformin in T2D rats exposed to a cold-restraint stress paradigm [115]. Intraperitoneal
injection of zopiclone, a non-benzodiazepine ligand, caused an acute antihyperlipidemic effect with a moderate decrease
in blood glucose levels in hyperlipidemic rats [116]. These findings suggest that GABA agonists may be beneficial for
glucose metabolism at least under diabetic conditions. However, further studies are required to clarify the pathophy-
siological relevance of GABA function/dysfunction in metabolic disorders.

Outstanding Questions
What are the neuroendocrine mecha-
nisms underlying increases in food
intake following sleep loss? How do
melatonin and orexin cooperate to
maintain energy and glucose homeo-
stasis in diurnal and nocturnal animals?
A clearer understanding of these mech-
anisms may open exciting new thera-
peutic approaches to combat sleep
disorders with glucose intolerance.

Does the amelioration of sleep per se
influence glucose metabolism in diabetic
patients? What is the relative contribu-
tion of REM versus non-REM sleep in
the regulation of glucose homeostasis?

Can a dual orexin receptor antagonist
ameliorate glucose metabolism in dia-
betes and if so how? Since daily orexin
actions regulating both sleep and glu-
cose metabolism are perturbed in the
obese/diabetic state, an investigation
of their therapeutic potential may yield
great benefits for insomnia patients
with diabetes.
impair memory-conserving functions in the brain [98]. Regarding the impact of suvorexant on
metabolism, the proportions of insomnia patients who gained or lost weight during the 1-year
treatment did not differ between placebo and suvorexant-treated groups [95]. However, it
remains unclear whether suvorexant affects glucose metabolism by ameliorating sleep in
animals and humans.

Sleep loss increases the activity of the SNS [99]. Oral administration of almorexant, a DORA,
reduced blood pressure, heart rate, and sympathetic vasomotor tone in spontaneous hyper-
tensive rats in the awake and non-REM sleep states during both the dark and light periods and
these changes were associated with decreased noradrenaline levels in the CSF and plasma
[100]. Intracerebroventricular injection of TCS-OX2-29, an OX2R antagonist, also reduced blood
pressure and heart rates in spontaneous hypertensive rats but not normotensive rats, whereas
SB-334867, an OX1R antagonist, had no effects [101]. Sympathetic nervous tone is elevated in
the diabetic state [102,103] as well as under conditions of sleep restriction or circadian
misalignment in humans [1,10]. As described above, elevated SNS activity is an important
causal factor in glucose intolerance and insulin resistance, and the antihypertensive effects of
orexin antagonists may be useful for preventing diabetic macrovascular complications.

Concluding Remarks and Future Perspectives
Sleep disturbances and glucose intolerance are highly prevalent in modern society. The
exacerbating influence of sleep disturbances on the regulation of blood glucose levels and
the progression of complications in diabetes have recently been demonstrated in clinical studies
[3,4,6,13,16,103]. However, it remains unclear whether the amelioration of sleep itself improves
glucose metabolism in the diabetic state (see Outstanding Questions). Furthermore, the relative
contributions of REM versus non-REM sleep to the regulation of glucose metabolism need to
be deciphered. As discussed in this review, the influences of anti-insomnia drugs on glucose
metabolism in humans are largely unknown and controversial [30,31]. In brief, melatonin
agonists have shown several beneficial effects on glucose and energy metabolism; however,
these were mainly due to direct effects on peripheral organs or radical-scavenging effects [104]
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rather than amelioration of the sleep/wake cycle. GABA agonists not only promote sleep but also
directly stimulate pancreatic insulin secretion [105]. Therefore, orexin receptor antagonists such
as DORAs may be ideal pharmacological tools to evaluate the impact of natural sleep on glucose
metabolism because most endogenous orexin actions occur in the CNS. In addition, DORAs
increase REM and non-REM sleep, whereas GABA agonists mainly increase non-REM sleep
[92,96–98]. Future large cohort clinical studies are needed to elucidate the impact of anti-
insomnia drugs on glucose metabolism as well as their mechanisms of action in diabetic
patients. The appropriate use of sleep therapies may assist and optimize current therapeutic
approaches for the treatment of T2D.
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